Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Synergistic Network Learning and Label Correction for Noise-robust Image Classification (2202.13472v1)

Published 27 Feb 2022 in cs.CV and cs.AI

Abstract: Large training datasets almost always contain examples with inaccurate or incorrect labels. Deep Neural Networks (DNNs) tend to overfit training label noise, resulting in poorer model performance in practice. To address this problem, we propose a robust label correction framework combining the ideas of small loss selection and noise correction, which learns network parameters and reassigns ground truth labels iteratively. Taking the expertise of DNNs to learn meaningful patterns before fitting noise, our framework first trains two networks over the current dataset with small loss selection. Based on the classification loss and agreement loss of two networks, we can measure the confidence of training data. More and more confident samples are selected for label correction during the learning process. We demonstrate our method on both synthetic and real-world datasets with different noise types and rates, including CIFAR-10, CIFAR-100 and Clothing1M, where our method outperforms the baseline approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube