Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization (2202.13328v2)

Published 27 Feb 2022 in cs.LG and math.OC

Abstract: We consider linear prediction with a convex Lipschitz loss, or more generally, stochastic convex optimization problems of generalized linear form, i.e.~where each instantaneous loss is a scalar convex function of a linear function. We show that in this setting, early stopped Gradient Descent (GD), without any explicit regularization or projection, ensures excess error at most $\epsilon$ (compared to the best possible with unit Euclidean norm) with an optimal, up to logarithmic factors, sample complexity of $\tilde{O}(1/\epsilon2)$ and only $\tilde{O}(1/\epsilon2)$ iterations. This contrasts with general stochastic convex optimization, where $\Omega(1/\epsilon4)$ iterations are needed Amir et al. [2021b]. The lower iteration complexity is ensured by leveraging uniform convergence rather than stability. But instead of uniform convergence in a norm ball, which we show can guarantee suboptimal learning using $\Theta(1/\epsilon4)$ samples, we rely on uniform convergence in a distribution-dependent ball.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.