Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Robust Tensor Ring Model for Incomplete Multiway Data (2202.13321v2)

Published 27 Feb 2022 in cs.LG, cs.AI, and stat.ML

Abstract: Robust tensor completion (RTC) aims to recover a low-rank tensor from its incomplete observation with outlier corruption. The recently proposed tensor ring (TR) model has demonstrated superiority in solving the RTC problem. However, the existing methods either require a pre-assigned TR rank or aggressively pursue the minimum TR rank, thereby often leading to biased solutions in the presence of noise. In this paper, a Bayesian robust tensor ring decomposition (BRTR) method is proposed to give more accurate solutions to the RTC problem, which can avoid exquisite selection of the TR rank and penalty parameters. A variational Bayesian (VB) algorithm is developed to infer the probability distribution of posteriors. During the learning process, BRTR can prune off slices of core tensor with marginal components, resulting in automatic TR rank detection. Extensive experiments show that BRTR can achieve significantly improved performance than other state-of-the-art methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.