Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Attention-based Cross-Layer Domain Alignment for Unsupervised Domain Adaptation (2202.13310v1)

Published 27 Feb 2022 in cs.CV

Abstract: Unsupervised domain adaptation (UDA) aims to learn transferable knowledge from a labeled source domain and adapts a trained model to an unlabeled target domain. To bridge the gap between source and target domains, one prevailing strategy is to minimize the distribution discrepancy by aligning their semantic features extracted by deep models. The existing alignment-based methods mainly focus on reducing domain divergence in the same model layer. However, the same level of semantic information could distribute across model layers due to the domain shifts. To further boost model adaptation performance, we propose a novel method called Attention-based Cross-layer Domain Alignment (ACDA), which captures the semantic relationship between the source and target domains across model layers and calibrates each level of semantic information automatically through a dynamic attention mechanism. An elaborate attention mechanism is designed to reweight each cross-layer pair based on their semantic similarity for precise domain alignment, effectively matching each level of semantic information during model adaptation. Extensive experiments on multiple benchmark datasets consistently show that the proposed method ACDA yields state-of-the-art performance.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube