Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RL-PGO: Reinforcement Learning-based Planar Pose-Graph Optimization (2202.13221v1)

Published 26 Feb 2022 in cs.RO and cs.AI

Abstract: The objective of pose SLAM or pose-graph optimization (PGO) is to estimate the trajectory of a robot given odometric and loop closing constraints. State-of-the-art iterative approaches typically involve the linearization of a non-convex objective function and then repeatedly solve a set of normal equations. Furthermore, these methods may converge to a local minima yielding sub-optimal results. In this work, we present to the best of our knowledge the first Deep Reinforcement Learning (DRL) based environment and proposed agent for 2D pose-graph optimization. We demonstrate that the pose-graph optimization problem can be modeled as a partially observable Markov Decision Process and evaluate performance on real-world and synthetic datasets. The proposed agent outperforms state-of-the-art solver g2o on challenging instances where traditional nonlinear least-squares techniques may fail or converge to unsatisfactory solutions. Experimental results indicate that iterative-based solvers bootstrapped with the proposed approach allow for significantly higher quality estimations. We believe that reinforcement learning-based PGO is a promising avenue to further accelerate research towards globally optimal algorithms. Thus, our work paves the way to new optimization strategies in the 2D pose SLAM domain.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.