Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

How Much Depth Information can Radar Contribute to a Depth Estimation Model? (2202.13220v2)

Published 26 Feb 2022 in cs.CV and eess.IV

Abstract: Recently, several works have proposed fusing radar data as an additional perceptual signal into monocular depth estimation models because radar data is robust against varying light and weather conditions. Although improved performances were reported in prior works, it is still hard to tell how much depth information radar can contribute to a depth estimation model. In this paper, we propose radar inference and supervision experiments to investigate the intrinsic depth potential of radar data using state-of-the-art depth estimation models on the nuScenes dataset. In the inference experiment, the model predicts depth by taking only radar as input to demonstrate the inference capability using radar data. In the supervision experiment, a monocular depth estimation model is trained under radar supervision to show the intrinsic depth information that radar can contribute. Our experiments demonstrate that the model using only sparse radar as input can detect the shape of surroundings to a certain extent in the predicted depth. Furthermore, the monocular depth estimation model supervised by preprocessed radar achieves a good performance compared to the baseline model trained with sparse lidar supervision.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.