Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-image Super-resolution via Quality Map Associated Attention Network (2202.13124v3)

Published 26 Feb 2022 in eess.IV and cs.CV

Abstract: Multi-image super-resolution, which aims to fuse and restore a high-resolution image from multiple images at the same location, is crucial for utilizing satellite images. The satellite images are often occluded by atmospheric disturbances such as clouds, and the position of the disturbances varies by the images. Many radiometric and geometric approaches are proposed to detect atmospheric disturbances. Still, the utilization of detection results, i.e., quality maps in deep learning was limited to pre-processing or computation of loss. In this paper, we present a quality map-associated attention network (QA-Net), an architecture that fully incorporates QMs into a deep learning scheme for the first time. Our proposed attention modules process QMs alongside the low-resolution images and utilize the QM features to distinguish the disturbances and attend to image features. As a result, QA-Net has achieved state-of-the-art results in the PROBA-V dataset.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)