Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Joint Offloading Decision and Resource Allocation for Vehicular Fog-Edge Computing Networks: A Contract-Stackelberg Approach (2202.13037v1)

Published 26 Feb 2022 in cs.DC

Abstract: With the popularity of mobile devices and development of computationally intensive applications, researchers are focusing on offloading computation to Mobile Edge Computing (MEC) server due to its high computational efficiency and low communication delay. As the computing resources of an MEC server are limited, vehicles in the urban area who have abundant idle resources should be fully utilized. However, offloading computing tasks to vehicles faces many challenging issues. In this paper, we introduce a vehicular fog-edge computing paradigm and formulate it as a multi-stage Stackelberg game to deal with these issues. Specifically, vehicles are not obligated to share resources, let alone disclose their private information (e.g., stay time and the amount of resources). Therefore, in the first stage, we design a contract-based incentive mechanism to motivate vehicles to contribute their idle resources. Next, due to the complicated interactions among vehicles, road-side unit (RSU), MEC server and mobile device users, it is challenging to coordinate the resources of all parties and design a transaction mechanism to make all entities benefit. In the second and third stages, based on Stackelberg game, we develop pricing strategies that maximize the utilities of all parties. The analytical forms of optimal strategies for each stage are given. Simulation results demonstrate the effectiveness of our proposed incentive mechanism, reveal the trends of energy consumption and offloading decisions of users with various parameters, and present the performance comparison between our framework and existing MEC offloading paradigm in vehicular networks.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.