Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms (2202.13001v6)

Published 25 Feb 2022 in cs.LG and stat.ML

Abstract: We study a sequential decision problem where the learner faces a sequence of $K$-armed bandit tasks. The task boundaries might be known (the bandit meta-learning setting), or unknown (the non-stationary bandit setting). For a given integer $M\le K$, the learner aims to compete with the best subset of arms of size $M$. We design an algorithm based on a reduction to bandit submodular maximization, and show that, for $T$ rounds comprised of $N$ tasks, in the regime of large number of tasks and small number of optimal arms $M$, its regret in both settings is smaller than the simple baseline of $\tilde{O}(\sqrt{KNT})$ that can be obtained by using standard algorithms designed for non-stationary bandit problems. For the bandit meta-learning problem with fixed task length $\tau$, we show that the regret of the algorithm is bounded as $\tilde{O}(NM\sqrt{M \tau}+N{2/3}M\tau)$. Under additional assumptions on the identifiability of the optimal arms in each task, we show a bandit meta-learning algorithm with an improved $\tilde{O}(N\sqrt{M \tau}+N{1/2}\sqrt{M K \tau})$ regret.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.