Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A CNN-based Post-Processor for Perceptually-Optimized Immersive Media Compression (2202.12852v1)

Published 25 Feb 2022 in eess.IV

Abstract: In recent years, resolution adaptation based on deep neural networks has enabled significant performance gains for conventional (2D) video codecs. This paper investigates the effectiveness of spatial resolution resampling in the context of immersive content. The proposed approach reduces the spatial resolution of input multi-view videos before encoding, and reconstructs their original resolution after decoding. During the up-sampling process, an advanced CNN model is used to reduce potential re-sampling, compression, and synthesis artifacts. This work has been fully tested with the TMIV coding standard using a Versatile Video Coding (VVC) codec. The results demonstrate that the proposed method achieves a significant rate-quality performance improvement for the majority of the test sequences, with an average BD-VMAF improvement of 3.07 overall sequences.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.