Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dynamic Regret of Online Mirror Descent for Relatively Smooth Convex Cost Functions (2202.12843v1)

Published 25 Feb 2022 in cs.LG and math.OC

Abstract: The performance of online convex optimization algorithms in a dynamic environment is often expressed in terms of the dynamic regret, which measures the decision maker's performance against a sequence of time-varying comparators. In the analysis of the dynamic regret, prior works often assume Lipschitz continuity or uniform smoothness of the cost functions. However, there are many important cost functions in practice that do not satisfy these conditions. In such cases, prior analyses are not applicable and fail to guarantee the optimization performance. In this letter, we show that it is possible to bound the dynamic regret, even when neither Lipschitz continuity nor uniform smoothness is present. We adopt the notion of relative smoothness with respect to some user-defined regularization function, which is a much milder requirement on the cost functions. We first show that under relative smoothness, the dynamic regret has an upper bound based on the path length and functional variation. We then show that with an additional condition of relatively strong convexity, the dynamic regret can be bounded by the path length and gradient variation. These regret bounds provide performance guarantees to a wide variety of online optimization problems that arise in different application domains. Finally, we present numerical experiments that demonstrate the advantage of adopting a regularization function under which the cost functions are relatively smooth.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)