Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Core-periphery detection in hypergraphs (2202.12769v1)

Published 25 Feb 2022 in cs.SI, cs.NA, math.NA, and physics.data-an

Abstract: Core-periphery detection is a key task in exploratory network analysis where one aims to find a core, a set of nodes well-connected internally and with the periphery, and a periphery, a set of nodes connected only (or mostly) with the core. In this work we propose a model of core-periphery for higher-order networks modeled as hypergraphs and we propose a method for computing a core-score vector that quantifies how close each node is to the core. In particular, we show that this method solves the corresponding non-convex core-periphery optimization problem globally to an arbitrary precision. This method turns out to coincide with the computation of the Perron eigenvector of a nonlinear hypergraph operator, suitably defined in term of the incidence matrix of the hypergraph, generalizing recently proposed centrality models for hypergraphs. We perform several experiments on synthetic and real-world hypergraphs showing that the proposed method outperforms alternative core-periphery detection algorithms, in particular those obtained by transferring established graph methods to the hypergraph setting via clique expansion.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.