Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning based refinement strategies for polyhedral grids with applications to Virtual Element and polyhedral Discontinuous Galerkin methods (2202.12654v2)

Published 25 Feb 2022 in math.NA, cs.LG, and cs.NA

Abstract: We propose two new strategies based on Machine Learning techniques to handle polyhedral grid refinement, to be possibly employed within an adaptive framework. The first one employs the k-means clustering algorithm to partition the points of the polyhedron to be refined. This strategy is a variation of the well known Centroidal Voronoi Tessellation. The second one employs Convolutional Neural Networks to classify the "shape" of an element so that "ad-hoc" refinement criteria can be defined. This strategy can be used to enhance existing refinement strategies, including the k-means strategy, at a low online computational cost. We test the proposed algorithms considering two families of finite element methods that support arbitrarily shaped polyhedral elements, namely the Virtual Element Method (VEM) and the Polygonal Discontinuous Galerkin (PolyDG) method. We demonstrate that these strategies do preserve the structure and the quality of the underlaying grids, reducing the overall computational cost and mesh complexity.

Citations (13)

Summary

We haven't generated a summary for this paper yet.