Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains (2202.12636v3)

Published 25 Feb 2022 in stat.ML and cs.LG

Abstract: Multi-task Gaussian process (MTGP) is a well-known non-parametric Bayesian model for learning correlated tasks effectively by transferring knowledge across tasks. But current MTGPs are usually limited to the multi-task scenario defined in the same input domain, leaving no space for tackling the heterogeneous case, i.e., the features of input domains vary over tasks. To this end, this paper presents a novel heterogeneous stochastic variational linear model of coregionalization (HSVLMC) model for simultaneously learning the tasks with varied input domains. Particularly, we develop the stochastic variational framework with Bayesian calibration that (i) takes into account the effect of dimensionality reduction raised by domain mappings in order to achieve effective input alignment; and (ii) employs a residual modeling strategy to leverage the inductive bias brought by prior domain mappings for better model inference. Finally, the superiority of the proposed model against existing LMC models has been extensively verified on diverse heterogeneous multi-task cases and a practical multi-fidelity steam turbine exhaust problem.

Citations (5)

Summary

We haven't generated a summary for this paper yet.