Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Raman Spectrum Matching with Contrastive Representation Learning (2202.12549v1)

Published 25 Feb 2022 in cs.LG

Abstract: Raman spectroscopy is an effective, low-cost, non-intrusive technique often used for chemical identification. Typical approaches are based on matching observations to a reference database, which requires careful preprocessing, or supervised machine learning, which requires a fairly large number of training observations from each class. We propose a new machine learning technique for Raman spectrum matching, based on contrastive representation learning, that requires no preprocessing and works with as little as a single reference spectrum from each class. On three datasets we demonstrate that our approach significantly improves or is on par with the state of the art in prediction accuracy, and we show how to compute conformal prediction sets with specified frequentist coverage. Based on our findings, we believe contrastive representation learning is a promising alternative to existing methods for Raman spectrum matching.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.