Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Faithful learning with sure data for lung nodule diagnosis (2202.12515v1)

Published 25 Feb 2022 in eess.IV and cs.CV

Abstract: Recent evolution in deep learning has proven its value for CT-based lung nodule classification. Most current techniques are intrinsically black-box systems, suffering from two generalizability issues in clinical practice. First, benign-malignant discrimination is often assessed by human observers without pathologic diagnoses at the nodule level. We termed these data as "unsure data". Second, a classifier does not necessarily acquire reliable nodule features for stable learning and robust prediction with patch-level labels during learning. In this study, we construct a sure dataset with pathologically-confirmed labels and propose a collaborative learning framework to facilitate sure nodule classification by integrating unsure data knowledge through nodule segmentation and malignancy score regression. A loss function is designed to learn reliable features by introducing interpretability constraints regulated with nodule segmentation maps. Furthermore, based on model inference results that reflect the understanding from both machine and experts, we explore a new nodule analysis method for similar historical nodule retrieval and interpretable diagnosis. Detailed experimental results demonstrate that our approach is beneficial for achieving improved performance coupled with faithful model reasoning for lung cancer prediction. Extensive cross-evaluation results further illustrate the effect of unsure data for deep-learning-based methods in lung nodule classification.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.