Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Microgrid Optimal Energy Scheduling Considering Neural Network based Battery Degradation (2202.12416v4)

Published 24 Feb 2022 in eess.SP and cs.LG

Abstract: Battery energy storage system (BESS) can effec-tively mitigate the uncertainty of variable renewable generation. Degradation is unpreventable and hard to model and predict for batteries such as the most popular Lithium-ion battery (LiB). In this paper, we propose a data driven method to predict the bat-tery degradation per a given scheduled battery operational pro-file. Particularly, a neural network based battery degradation (NNBD) model is proposed to quantify the battery degradation with inputs of major battery degradation factors. When incorpo-rating the proposed NNBD model into microgrid day-ahead scheduling (MDS), we can establish a battery degradation based MDS (BDMDS) model that can consider the equivalent battery degradation cost precisely with the proposed cycle based battery usage processing (CBUP) method for the NNBD model. Since the proposed NNBD model is highly non-linear and non-convex, BDMDS would be very hard to solve. To address this issue, a neural network and optimization decoupled heuristic (NNODH) algorithm is proposed in this paper to effectively solve this neural network embedded optimization problem. Simulation results demonstrate that the proposed NNODH algorithm is able to ob-tain the optimal solution with lowest total cost including normal operation cost and battery degradation cost.

Citations (19)

Summary

We haven't generated a summary for this paper yet.