Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BERTVision -- A Parameter-Efficient Approach for Question Answering (2202.12210v1)

Published 24 Feb 2022 in cs.CL and cs.LG

Abstract: We present a highly parameter efficient approach for Question Answering that significantly reduces the need for extended BERT fine-tuning. Our method uses information from the hidden state activations of each BERT transformer layer, which is discarded during typical BERT inference. Our best model achieves maximal BERT performance at a fraction of the training time and GPU or TPU expense. Performance is further improved by ensembling our model with BERTs predictions. Furthermore, we find that near optimal performance can be achieved for QA span annotation using less training data. Our experiments show that this approach works well not only for span annotation, but also for classification, suggesting that it may be extensible to a wider range of tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.