Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Counting Temporal Paths (2202.12055v2)

Published 24 Feb 2022 in cs.DS, cs.CC, and cs.DM

Abstract: The betweenness centrality of a vertex v is an important centrality measure that quantifies how many optimal paths between pairs of other vertices visit v. Computing betweenness centrality in a temporal graph, in which the edge set may change over discrete timesteps, requires us to count temporal paths that are optimal with respect to some criterion. For several natural notions of optimality, including foremost or fastest temporal paths, this counting problem reduces to #Temporal Path, the problem of counting all temporal paths between a fixed pair of vertices; like the problems of counting foremost and fastest temporal paths, #Temporal Path is #P-hard in general. Motivated by the many applications of this intractable problem, we initiate a systematic study of the prameterised and approximation complexity of #Temporal Path. We show that the problem presumably does not admit an FPT-algorithm for the feedback vertex number of the static underlying graph, and that it is hard to approximate in general. On the positive side, we proved several exact and approximate FPT-algorithms for special cases.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.