Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Can deep neural networks learn process model structure? An assessment framework and analysis (2202.11985v1)

Published 24 Feb 2022 in cs.LG

Abstract: Predictive process monitoring concerns itself with the prediction of ongoing cases in (business) processes. Prediction tasks typically focus on remaining time, outcome, next event or full case suffix prediction. Various methods using machine and deep learning havebeen proposed for these tasks in recent years. Especially recurrent neural networks (RNNs) such as long short-term memory nets (LSTMs) have gained in popularity. However, no research focuses on whether such neural network-based models can truly learn the structure of underlying process models. For instance, can such neural networks effectively learn parallel behaviour or loops? Therefore, in this work, we propose an evaluation scheme complemented with new fitness, precision, and generalisation metrics, specifically tailored towards measuring the capacity of deep learning models to learn process model structure. We apply this framework to several process models with simple control-flow behaviour, on the task of next-event prediction. Our results show that, even for such simplistic models, careful tuning of overfitting countermeasures is required to allow these models to learn process model structure.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.