Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DC and SA: Robust and Efficient Hyperparameter Optimization of Multi-subnetwork Deep Learning Models (2202.11841v1)

Published 24 Feb 2022 in cs.LG

Abstract: We present two novel hyperparameter optimization strategies for optimization of deep learning models with a modular architecture constructed of multiple subnetworks. As complex networks with multiple subnetworks become more frequently applied in machine learning, hyperparameter optimization methods are required to efficiently optimize their hyperparameters. Existing hyperparameter searches are general, and can be used to optimize such networks, however, by exploiting the multi-subnetwork architecture, these searches can be sped up substantially. The proposed methods offer faster convergence to a better-performing final model. To demonstrate this, we propose 2 independent approaches to enhance these prior algorithms: 1) a divide-and-conquer approach, in which the best subnetworks of top-performing models are combined, allowing for more rapid sampling of the hyperparameter search space. 2) A subnetwork adaptive approach that distributes computational resources based on the importance of each subnetwork, allowing more intelligent resource allocation. These approaches can be flexibily applied to many hyperparameter optimization algorithms. To illustrate this, we combine our approaches with the commonly-used Bayesian optimization method. Our approaches are then tested against both synthetic examples and real-world examples and applied to multiple network types including convolutional neural networks and dense feed forward neural networks. Our approaches show an increased optimization efficiency of up to 23.62x, and a final performance boost of up to 3.5% accuracy for classification and 4.4 MSE for regression, when compared to comparable BO approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.