Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Nuclei panoptic segmentation and composition regression with multi-task deep neural networks (2202.11804v1)

Published 23 Feb 2022 in eess.IV and cs.CV

Abstract: Nuclear segmentation, classification and quantification within Haematoxylin & Eosin stained histology images enables the extraction of interpretable cell-based features that can be used in downstream explainable models in computational pathology. The Colon Nuclei Identification and Counting (CoNIC) Challenge is held to help drive forward research and innovation for automatic nuclei recognition in computational pathology. This report describes our proposed method submitted to the CoNIC challenge. Our method employs a multi-task learning framework, which performs a panoptic segmentation task and a regression task. For the panoptic segmentation task, we use encoder-decoder type deep neural networks predicting a direction map in addition to a segmentation map in order to separate neighboring nuclei into different instances

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.