Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Reconstruction Task Finds Universal Winning Tickets (2202.11484v1)

Published 23 Feb 2022 in cs.CV

Abstract: Pruning well-trained neural networks is effective to achieve a promising accuracy-efficiency trade-off in computer vision regimes. However, most of existing pruning algorithms only focus on the classification task defined on the source domain. Different from the strong transferability of the original model, a pruned network is hard to transfer to complicated downstream tasks such as object detection arXiv:arch-ive/2012.04643. In this paper, we show that the image-level pretrain task is not capable of pruning models for diverse downstream tasks. To mitigate this problem, we introduce image reconstruction, a pixel-level task, into the traditional pruning framework. Concretely, an autoencoder is trained based on the original model, and then the pruning process is optimized with both autoencoder and classification losses. The empirical study on benchmark downstream tasks shows that the proposed method can outperform state-of-the-art results explicitly.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube