Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end LPCNet: A Neural Vocoder With Fully-Differentiable LPC Estimation (2202.11301v2)

Published 23 Feb 2022 in eess.AS and cs.SD

Abstract: Neural vocoders have recently demonstrated high quality speech synthesis, but typically require a high computational complexity. LPCNet was proposed as a way to reduce the complexity of neural synthesis by using linear prediction (LP) to assist an autoregressive model. At inference time, LPCNet relies on the LP coefficients being explicitly computed from the input acoustic features. That makes the design of LPCNet-based systems more complicated, while adding the constraint that the input features must represent a clean speech spectrum. We propose an end-to-end version of LPCNet that lifts these limitations by learning to infer the LP coefficients from the input features in the frame rate network. Results show that the proposed end-to-end approach equals or exceeds the quality of the original LPCNet model, but without explicit LP analysis. Our open-source end-to-end model still benefits from LPCNet's low complexity, while allowing for any type of conditioning features.

Citations (9)

Summary

We haven't generated a summary for this paper yet.