Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Minimax Optimal Quantization of Linear Models: Information-Theoretic Limits and Efficient Algorithms (2202.11277v2)

Published 23 Feb 2022 in cs.IT, cs.LG, eess.SP, math.IT, and stat.ML

Abstract: High-dimensional models often have a large memory footprint and must be quantized after training before being deployed on resource-constrained edge devices for inference tasks. In this work, we develop an information-theoretic framework for the problem of quantizing a linear regressor learned from training data $(\mathbf{X}, \mathbf{y})$, for some underlying statistical relationship $\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \mathbf{v}$. The learned model, which is an estimate of the latent parameter $\boldsymbol{\theta} \in \mathbb{R}d$, is constrained to be representable using only $Bd$ bits, where $B \in (0, \infty)$ is a pre-specified budget and $d$ is the dimension. We derive an information-theoretic lower bound for the minimax risk under this setting and propose a matching upper bound using randomized embedding-based algorithms which is tight up to constant factors. The lower and upper bounds together characterize the minimum threshold bit-budget required to achieve a performance risk comparable to the unquantized setting. We also propose randomized Hadamard embeddings that are computationally efficient and are optimal up to a mild logarithmic factor of the lower bound. Our model quantization strategy can be generalized and we show its efficacy by extending the method and upper-bounds to two-layer ReLU neural networks for non-linear regression. Numerical simulations show the improved performance of our proposed scheme as well as its closeness to the lower bound.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube