Emergent Mind

Minimax Optimal Quantization of Linear Models: Information-Theoretic Limits and Efficient Algorithms

(2202.11277)
Published Feb 23, 2022 in cs.IT , cs.LG , eess.SP , math.IT , and stat.ML

Abstract

High-dimensional models often have a large memory footprint and must be quantized after training before being deployed on resource-constrained edge devices for inference tasks. In this work, we develop an information-theoretic framework for the problem of quantizing a linear regressor learned from training data $(\mathbf{X}, \mathbf{y})$, for some underlying statistical relationship $\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \mathbf{v}$. The learned model, which is an estimate of the latent parameter $\boldsymbol{\theta} \in \mathbb{R}d$, is constrained to be representable using only $Bd$ bits, where $B \in (0, \infty)$ is a pre-specified budget and $d$ is the dimension. We derive an information-theoretic lower bound for the minimax risk under this setting and propose a matching upper bound using randomized embedding-based algorithms which is tight up to constant factors. The lower and upper bounds together characterize the minimum threshold bit-budget required to achieve a performance risk comparable to the unquantized setting. We also propose randomized Hadamard embeddings that are computationally efficient and are optimal up to a mild logarithmic factor of the lower bound. Our model quantization strategy can be generalized and we show its efficacy by extending the method and upper-bounds to two-layer ReLU neural networks for non-linear regression. Numerical simulations show the improved performance of our proposed scheme as well as its closeness to the lower bound.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.