Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring Edge Disentanglement for Node Classification (2202.11245v1)

Published 23 Feb 2022 in cs.SI and cs.LG

Abstract: Edges in real-world graphs are typically formed by a variety of factors and carry diverse relation semantics. For example, connections in a social network could indicate friendship, being colleagues, or living in the same neighborhood. However, these latent factors are usually concealed behind mere edge existence due to the data collection and graph formation processes. Despite rapid developments in graph learning over these years, most models take a holistic approach and treat all edges as equal. One major difficulty in disentangling edges is the lack of explicit supervisions. In this work, with close examination of edge patterns, we propose three heuristics and design three corresponding pretext tasks to guide the automatic edge disentanglement. Concretely, these self-supervision tasks are enforced on a designed edge disentanglement module to be trained jointly with the downstream node classification task to encourage automatic edge disentanglement. Channels of the disentanglement module are expected to capture distinguishable relations and neighborhood interactions, and outputs from them are aggregated as node representations. The proposed DisGNN is easy to be incorporated with various neural architectures, and we conduct experiments on $6$ real-world datasets. Empirical results show that it can achieve significant performance gains.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.