Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Designing Menus of Contracts Efficiently: The Power of Randomization (2202.10966v2)

Published 22 Feb 2022 in cs.GT

Abstract: We study hidden-action principal-agent problems in which a principal commits to an outcome-dependent payment scheme (called contract) so as to incentivize the agent to take a costly, unobservable action leading to favorable outcomes. In particular, we focus on Bayesian settings where the agent has private information. This is collectively encoded by the agent's type, which is unknown to the principal, but randomly drawn according to a finitely-supported, commonly-known probability distribution. In Bayesian principal-agent problems, the principal may be better off by committing to a menu of contracts specifying a contract for each agent's type, rather than committing to a single contract. This induces a two-stage process that resembles interactions studied in classical mechanism design: after the principal has committed to a menu, the agent first reports a type to the principal, and, then, the latter puts in place the contract in the menu that corresponds to the reported type. Thus, the principal's computational problem boils down to designing a menu of contracts that incentivizes the agent to report their true type and maximizes expected utility. Previous works showed that computing an optimal menu of contracts is APX-hard. Crucially, previous works focus on menus of deterministic contracts. Surprisingly, we show that, if one considers menus of randomized contracts defined as probability distributions over payment vectors, then an "almost-optimal" menu can be computed in polynomial time. Indeed, the problem of computing a principal-optimal menu of randomized contracts may not admit a maximum, but only a supremum. Nevertheless, we show how to design a polynomial-time algorithm that guarantees the principal with an expected utility arbitrarily close to the supremum. Besides this main result, we also close several gaps in the analysis of menus of deterministic contracts.

Citations (27)

Summary

We haven't generated a summary for this paper yet.