Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Relation Regularized Scene Graph Generation (2202.10826v1)

Published 22 Feb 2022 in cs.CV

Abstract: Scene graph generation (SGG) is built on top of detected objects to predict object pairwise visual relations for describing the image content abstraction. Existing works have revealed that if the links between objects are given as prior knowledge, the performance of SGG is significantly improved. Inspired by this observation, in this article, we propose a relation regularized network (R2-Net), which can predict whether there is a relationship between two objects and encode this relation into object feature refinement and better SGG. Specifically, we first construct an affinity matrix among detected objects to represent the probability of a relationship between two objects. Graph convolution networks (GCNs) over this relation affinity matrix are then used as object encoders, producing relation-regularized representations of objects. With these relation-regularized features, our R2-Net can effectively refine object labels and generate scene graphs. Extensive experiments are conducted on the visual genome dataset for three SGG tasks (i.e., predicate classification, scene graph classification, and scene graph detection), demonstrating the effectiveness of our proposed method. Ablation studies also verify the key roles of our proposed components in performance improvement.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube