Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CD-ROM: Complemented Deep-Reduced Order Model (2202.10746v4)

Published 22 Feb 2022 in physics.flu-dyn, cs.LG, and stat.ML

Abstract: Model order reduction through the POD-Galerkin method can lead to dramatic gains in terms of computational efficiency in solving physical problems. However, the applicability of the method to non linear high-dimensional dynamical systems such as the Navier-Stokes equations has been shown to be limited, producing inaccurate and sometimes unstable models. This paper proposes a deep learning based closure modeling approach for classical POD-Galerkin reduced order models (ROM). The proposed approach is theoretically grounded, using neural networks to approximate well studied operators. In contrast with most previous works, the present CD-ROM approach is based on an interpretable continuous memory formulation, derived from simple hypotheses on the behavior of partially observed dynamical systems. The final corrected models can hence be simulated using most classical time stepping schemes. The capabilities of the CD-ROM approach are demonstrated on two classical examples from Computational Fluid Dynamics, as well as a parametric case, the Kuramoto-Sivashinsky equation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.