Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Behaviour-Diverse Automatic Penetration Testing: A Curiosity-Driven Multi-Objective Deep Reinforcement Learning Approach (2202.10630v1)

Published 22 Feb 2022 in cs.LG, cs.AI, and cs.CR

Abstract: Penetration Testing plays a critical role in evaluating the security of a target network by emulating real active adversaries. Deep Reinforcement Learning (RL) is seen as a promising solution to automating the process of penetration tests by reducing human effort and improving reliability. Existing RL solutions focus on finding a specific attack path to impact the target hosts. However, in reality, a diverse range of attack variations are needed to provide comprehensive assessments of the target network's security level. Hence, the attack agents must consider multiple objectives when penetrating the network. Nevertheless, this challenge is not adequately addressed in the existing literature. To this end, we formulate the automatic penetration testing in the Multi-Objective Reinforcement Learning (MORL) framework and propose a Chebyshev decomposition critic to find diverse adversary strategies that balance different objectives in the penetration test. Additionally, the number of available actions increases with the agent consistently probing the target network, making the training process intractable in many practical situations. Thus, we introduce a coverage-based masking mechanism that reduces attention on previously selected actions to help the agent adapt to future exploration. Experimental evaluation on a range of scenarios demonstrates the superiority of our proposed approach when compared to adapted algorithms in terms of multi-objective learning and performance efficiency.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.