Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Survey on Offloading in Federated Cloud-Edge-Fog Systems with Traditional Optimization and Machine Learning (2202.10628v1)

Published 22 Feb 2022 in cs.NI

Abstract: The huge amount of data generated by the Internet of things (IoT) devices needs the computational power and storage capacity provided by cloud, edge, and fog computing paradigms. Each of these computing paradigms has its own pros and cons. Cloud computing provides enhanced data storage and computing power but causes high communication latency. Edge and fog computing provide similar services with lower latency but with limited capacity, capability, and coverage. A single computing paradigm cannot fulfil all the requirements of IoT devices and a federation between them is needed to extend their capacity, capability, and services. This federation is beneficial to both subscribers and providers and also reveals research issues in traffic offloading between clouds, edges, and fogs. Optimization has traditionally been used to solve the problem of traffic offloading. However, in such a complex federated system, traditional optimization cannot keep up with the strict latency requirements of decision making, ranging from milliseconds to sub-seconds. Machine learning approaches, especially reinforcement learning, are consequently becoming popular because they can quickly solve offloading problems in dynamic environments with large amounts of unknown information. This study provides a novel federal classification between cloud, edge, and fog and presents a comprehensive research roadmap on offloading for different federated scenarios. We survey the relevant literature on the various optimization approaches used to solve this offloading problem, and compare their salient features. We then provide a comprehensive survey on offloading in federated systems with machine learning approaches and the lessons learned as a result of these surveys. Finally, we outline several directions for future research and challenges that have to be faced in order to achieve such a federation.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.