Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 32 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Universal 1-Bit Compressive Sensing for Bounded Dynamic Range Signals (2202.10611v2)

Published 22 Feb 2022 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: A {\em universal 1-bit compressive sensing (CS)} scheme consists of a measurement matrix $A$ such that all signals $x$ belonging to a particular class can be approximately recovered from $\textrm{sign}(Ax)$. 1-bit CS models extreme quantization effects where only one bit of information is revealed per measurement. We focus on universal support recovery for 1-bit CS in the case of {\em sparse} signals with bounded {\em dynamic range}. Specifically, a vector $x \in \mathbb{R}n$ is said to have sparsity $k$ if it has at most $k$ nonzero entries, and dynamic range $R$ if the ratio between its largest and smallest nonzero entries is at most $R$ in magnitude. Our main result shows that if the entries of the measurement matrix $A$ are i.i.d.~Gaussians, then under mild assumptions on the scaling of $k$ and $R$, the number of measurements needs to be $\tilde{\Omega}(Rk{3/2})$ to recover the support of $k$-sparse signals with dynamic range $R$ using $1$-bit CS. In addition, we show that a near-matching $O(R k{3/2} \log n)$ upper bound follows as a simple corollary of known results. The $k{3/2}$ scaling contrasts with the known lower bound of $\tilde{\Omega}(k2 \log n)$ for the number of measurements to recover the support of arbitrary $k$-sparse signals.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.