Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimizing Recursive Queries with Program Synthesis (2202.10390v1)

Published 21 Feb 2022 in cs.DB

Abstract: Most work on query optimization has concentrated on loop-free queries. However, data science and machine learning workloads today typically involve recursive or iterative computation. In this work, we propose a novel framework for optimizing recursive queries using methods from program synthesis. In particular, we introduce a simple yet powerful optimization rule called the "FGH-rule" which aims to find a faster way to evaluate a recursive program. The solution is found by making use of powerful tools, such as a program synthesizer, an SMT-solver, and an equality saturation system. We demonstrate the strength of the optimization by showing that the FGH-rule can lead to speedups up to 4 orders of magnitude on three, already optimized Datalog systems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.