Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Learning of Safe Driving Policy via Human-AI Copilot Optimization (2202.10341v1)

Published 17 Feb 2022 in cs.LG, cs.AI, and cs.RO

Abstract: Human intervention is an effective way to inject human knowledge into the training loop of reinforcement learning, which can bring fast learning and ensured training safety. Given the very limited budget of human intervention, it remains challenging to design when and how human expert interacts with the learning agent in the training. In this work, we develop a novel human-in-the-loop learning method called Human-AI Copilot Optimization (HACO).To allow the agent's sufficient exploration in the risky environments while ensuring the training safety, the human expert can take over the control and demonstrate how to avoid probably dangerous situations or trivial behaviors. The proposed HACO then effectively utilizes the data both from the trial-and-error exploration and human's partial demonstration to train a high-performing agent. HACO extracts proxy state-action values from partial human demonstration and optimizes the agent to improve the proxy values meanwhile reduce the human interventions. The experiments show that HACO achieves a substantially high sample efficiency in the safe driving benchmark. HACO can train agents to drive in unseen traffic scenarios with a handful of human intervention budget and achieve high safety and generalizability, outperforming both reinforcement learning and imitation learning baselines with a large margin. Code and demo videos are available at: https://decisionforce.github.io/HACO/.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.