Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Speaker Adaptation Using Spectro-Temporal Deep Features for Dysarthric and Elderly Speech Recognition (2202.10290v3)

Published 21 Feb 2022 in eess.AS, cs.AI, cs.LG, cs.SD, and q-bio.QM

Abstract: Despite the rapid progress of automatic speech recognition (ASR) technologies targeting normal speech in recent decades, accurate recognition of dysarthric and elderly speech remains highly challenging tasks to date. Sources of heterogeneity commonly found in normal speech including accent or gender, when further compounded with the variability over age and speech pathology severity level, create large diversity among speakers. To this end, speaker adaptation techniques play a key role in personalization of ASR systems for such users. Motivated by the spectro-temporal level differences between dysarthric, elderly and normal speech that systematically manifest in articulatory imprecision, decreased volume and clarity, slower speaking rates and increased dysfluencies, novel spectrotemporal subspace basis deep embedding features derived using SVD speech spectrum decomposition are proposed in this paper to facilitate auxiliary feature based speaker adaptation of state-of-the-art hybrid DNN/TDNN and end-to-end Conformer speech recognition systems. Experiments were conducted on four tasks: the English UASpeech and TORGO dysarthric speech corpora; the English DementiaBank Pitt and Cantonese JCCOCC MoCA elderly speech datasets. The proposed spectro-temporal deep feature adapted systems outperformed baseline i-Vector and xVector adaptation by up to 2.63% absolute (8.63% relative) reduction in word error rate (WER). Consistent performance improvements were retained after model based speaker adaptation using learning hidden unit contributions (LHUC) was further applied. The best speaker adapted system using the proposed spectral basis embedding features produced the lowest published WER of 25.05% on the UASpeech test set of 16 dysarthric speakers.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.