Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Comprehensive Evaluation on Multi-channel Biometric Face Presentation Attack Detection (2202.10286v1)

Published 21 Feb 2022 in cs.CV

Abstract: The vulnerability against presentation attacks is a crucial problem undermining the wide-deployment of face recognition systems. Though presentation attack detection (PAD) systems try to address this problem, the lack of generalization and robustness continues to be a major concern. Several works have shown that using multi-channel PAD systems could alleviate this vulnerability and result in more robust systems. However, there is a wide selection of channels available for a PAD system such as RGB, Near Infrared, Shortwave Infrared, Depth, and Thermal sensors. Having a lot of sensors increases the cost of the system, and therefore an understanding of the performance of different sensors against a wide variety of attacks is necessary while selecting the modalities. In this work, we perform a comprehensive study to understand the effectiveness of various imaging modalities for PAD. The studies are performed on a multi-channel PAD dataset, collected with 14 different sensing modalities considering a wide range of 2D, 3D, and partial attacks. We used the multi-channel convolutional network-based architecture, which uses pixel-wise binary supervision. The model has been evaluated with different combinations of channels, and different image qualities on a variety of challenging known and unknown attack protocols. The results reveal interesting trends and can act as pointers for sensor selection for safety-critical presentation attack detection systems. The source codes and protocols to reproduce the results are made available publicly making it possible to extend this work to other architectures.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.