Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Vision-based Autonomous Driving for Unstructured Environments Using Imitation Learning (2202.10002v1)

Published 21 Feb 2022 in cs.RO

Abstract: Unstructured environments are difficult for autonomous driving. This is because various unknown obstacles are lied in drivable space without lanes, and its width and curvature change widely. In such complex environments, searching for a path in real-time is difficult. Also, inaccurate localization data reduce the path tracking accuracy, increasing the risk of collision. Instead of searching and tracking the path, an alternative approach has been proposed that reactively avoids obstacles in real-time. Some methods are available for tracking global path while avoiding obstacles using the candidate paths and the artificial potential field. However, these methods require heuristics to find specific parameters for handling various complex environments. In addition, it is difficult to track the global path accurately in practice because of inaccurate localization data. If the drivable space is not accurately recognized (i.e., noisy state), the vehicle may not smoothly drive or may collide with obstacles. In this study, a method in which the vehicle drives toward drivable space only using a vision-based occupancy grid map is proposed. The proposed method uses imitation learning, where a deep neural network is trained with expert driving data. The network can learn driving patterns suited for various complex and noisy situations because these situations are contained in the training data. Experiments with a vehicle in actual parking lots demonstrated the limitations of general model-based methods and the effectiveness of the proposed imitation learning method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.