Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive Coding for Multivariate Time-Series Anomaly Detection (2202.10001v1)

Published 21 Feb 2022 in cs.LG and cs.AI

Abstract: As large-scale time-series data can easily be found in real-world applications, multivariate time-series anomaly detection has played an essential role in diverse industries. It enables productivity improvement and maintenance cost reduction by preventing malfunctions and detecting anomalies based on time-series data. However, multivariate time-series anomaly detection is challenging because real-world time-series data exhibit complex temporal dependencies. For this task, it is crucial to learn a rich representation that effectively contains the nonlinear temporal dynamics of normal behavior. In this study, we propose an unsupervised multivariate time-series anomaly detection model named RAE-MEPC which learns informative normal representations based on multi-resolution ensemble and predictive coding. We introduce multi-resolution ensemble encoding to capture the multi-scale dependency from the input time series. The encoder hierarchically aggregates the temporal features extracted from the sub-encoders with different encoding lengths. From these encoded features, the reconstruction decoder reconstructs the input time series based on multi-resolution ensemble decoding where lower-resolution information helps to decode sub-decoders with higher-resolution outputs. Predictive coding is further introduced to encourage the model to learn the temporal dependencies of the time series. Experiments on real-world benchmark datasets show that the proposed model outperforms the benchmark models for multivariate time-series anomaly detection.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.