Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cross-Task Knowledge Distillation in Multi-Task Recommendation (2202.09852v2)

Published 20 Feb 2022 in cs.IR, cs.AI, and cs.LG

Abstract: Multi-task learning (MTL) has been widely used in recommender systems, wherein predicting each type of user feedback on items (e.g, click, purchase) are treated as individual tasks and jointly trained with a unified model. Our key observation is that the prediction results of each task may contain task-specific knowledge about user's fine-grained preference towards items. While such knowledge could be transferred to benefit other tasks, it is being overlooked under the current MTL paradigm. This paper, instead, proposes a Cross-Task Knowledge Distillation framework that attempts to leverage prediction results of one task as supervised signals to teach another task. However, integrating MTL and KD in a proper manner is non-trivial due to several challenges including task conflicts, inconsistent magnitude and requirement of synchronous optimization. As countermeasures, we 1) introduce auxiliary tasks with quadruplet loss functions to capture cross-task fine-grained ranking information and avoid task conflicts, 2) design a calibrated distillation approach to align and distill knowledge from auxiliary tasks, and 3) propose a novel error correction mechanism to enable and facilitate synchronous training of teacher and student models. Comprehensive experiments are conducted to verify the effectiveness of our framework in real-world datasets.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.