Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning (2202.09667v2)

Published 19 Feb 2022 in cs.LG, math.OC, math.ST, stat.ML, and stat.TH

Abstract: Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions, which is crucial in applications where online experimentation is limited. However, depending entirely on logged data, OPE/L is sensitive to environment distribution shifts -- discrepancies between the data-generating environment and that where policies are deployed. \citet{si2020distributional} proposed distributionally robust OPE/L (DROPE/L) to address this, but the proposal relies on inverse-propensity weighting, whose estimation error and regret will deteriorate if propensities are nonparametrically estimated and whose variance is suboptimal even if not. For standard, non-robust, OPE/L, this is solved by doubly robust (DR) methods, but they do not naturally extend to the more complex DROPE/L, which involves a worst-case expectation. In this paper, we propose the first DR algorithms for DROPE/L with KL-divergence uncertainty sets. For evaluation, we propose Localized Doubly Robust DROPE (LDR$2$OPE) and show that it achieves semiparametric efficiency under weak product rates conditions. Thanks to a localization technique, LDR$2$OPE only requires fitting a small number of regressions, just like DR methods for standard OPE. For learning, we propose Continuum Doubly Robust DROPL (CDR$2$OPL) and show that, under a product rate condition involving a continuum of regressions, it enjoys a fast regret rate of $\mathcal{O}\left(N{-1/2}\right)$ even when unknown propensities are nonparametrically estimated. We empirically validate our algorithms in simulations and further extend our results to general $f$-divergence uncertainty sets.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.