CALCS 2021 Shared Task: Machine Translation for Code-Switched Data (2202.09625v1)
Abstract: To date, efforts in the code-switching literature have focused for the most part on language identification, POS, NER, and syntactic parsing. In this paper, we address machine translation for code-switched social media data. We create a community shared task. We provide two modalities for participation: supervised and unsupervised. For the supervised setting, participants are challenged to translate English into Hindi-English (Eng-Hinglish) in a single direction. For the unsupervised setting, we provide the following language pairs: English and Spanish-English (Eng-Spanglish), and English and Modern Standard Arabic-Egyptian Arabic (Eng-MSAEA) in both directions. We share insights and challenges in curating the "into" code-switching language evaluation data. Further, we provide baselines for all language pairs in the shared task. The leaderboard for the shared task comprises 12 individual system submissions corresponding to 5 different teams. The best performance achieved is 12.67% BLEU score for English to Hinglish and 25.72% BLEU score for MSAEA to English.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.