Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MixKG: Mixing for harder negative samples in knowledge graph (2202.09606v1)

Published 19 Feb 2022 in cs.AI

Abstract: Knowledge graph embedding~(KGE) aims to represent entities and relations into low-dimensional vectors for many real-world applications. The representations of entities and relations are learned via contrasting the positive and negative triplets. Thus, high-quality negative samples are extremely important in KGE. However, the present KGE models either rely on simple negative sampling methods, which makes it difficult to obtain informative negative triplets; or employ complex adversarial methods, which requires more training data and strategies. In addition, these methods can only construct negative triplets using the existing entities, which limits the potential to explore harder negative triplets. To address these issues, we adopt mixing operation in generating harder negative samples for knowledge graphs and introduce an inexpensive but effective method called MixKG. Technically, MixKG first proposes two kinds of criteria to filter hard negative triplets among the sampled negatives: based on scoring function and based on correct entity similarity. Then, MixKG synthesizes harder negative samples via the convex combinations of the paired selected hard negatives. Experiments on two public datasets and four classical KGE methods show MixKG is superior to previous negative sampling algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.