Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Counterfactual Analysis of the Impact of the IMF Program on Child Poverty in the Global-South Region using Causal-Graphical Normalizing Flows (2202.09391v1)

Published 17 Feb 2022 in cs.AI, econ.EM, and stat.AP

Abstract: This work demonstrates the application of a particular branch of causal inference and deep learning models: \emph{causal-Graphical Normalizing Flows (c-GNFs)}. In a recent contribution, scholars showed that normalizing flows carry certain properties, making them particularly suitable for causal and counterfactual analysis. However, c-GNFs have only been tested in a simulated data setting and no contribution to date have evaluated the application of c-GNFs on large-scale real-world data. Focusing on the \emph{AI for social good}, our study provides a counterfactual analysis of the impact of the International Monetary Fund (IMF) program on child poverty using c-GNFs. The analysis relies on a large-scale real-world observational data: 1,941,734 children under the age of 18, cared for by 567,344 families residing in the 67 countries from the Global-South. While the primary objective of the IMF is to support governments in achieving economic stability, our results find that an IMF program reduces child poverty as a positive side-effect by about 1.2$\pm$0.24 degree (0' equals no poverty and7' is maximum poverty). Thus, our article shows how c-GNFs further the use of deep learning and causal inference in AI for social good. It shows how learning algorithms can be used for addressing the untapped potential for a significant social impact through counterfactual inference at population level (ACE), sub-population level (CACE), and individual level (ICE). In contrast to most works that model ACE or CACE but not ICE, c-GNFs enable personalization using \emph{`The First Law of Causal Inference'}.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube