Papers
Topics
Authors
Recent
2000 character limit reached

Learning Predictions for Algorithms with Predictions (2202.09312v2)

Published 18 Feb 2022 in cs.LG, cs.AI, cs.DS, and stat.ML

Abstract: A burgeoning paradigm in algorithm design is the field of algorithms with predictions, in which algorithms can take advantage of a possibly-imperfect prediction of some aspect of the problem. While much work has focused on using predictions to improve competitive ratios, running times, or other performance measures, less effort has been devoted to the question of how to obtain the predictions themselves, especially in the critical online setting. We introduce a general design approach for algorithms that learn predictors: (1) identify a functional dependence of the performance measure on the prediction quality and (2) apply techniques from online learning to learn predictors, tune robustness-consistency trade-offs, and bound the sample complexity. We demonstrate the effectiveness of our approach by applying it to bipartite matching, ski-rental, page migration, and job scheduling. In several settings we improve upon multiple existing results while utilizing a much simpler analysis, while in the others we provide the first learning-theoretic guarantees.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.