Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dimension-Free Noninteractive Simulation from Gaussian Sources (2202.09309v1)

Published 18 Feb 2022 in math.PR, cs.CC, cs.IT, and math.IT

Abstract: Let $X$ and $Y$ be two real-valued random variables. Let $(X_{1},Y_{1}),(X_{2},Y_{2}),\ldots$ be independent identically distributed copies of $(X,Y)$. Suppose there are two players A and B. Player A has access to $X_{1},X_{2},\ldots$ and player B has access to $Y_{1},Y_{2},\ldots$. Without communication, what joint probability distributions can players A and B jointly simulate? That is, if $k,m$ are fixed positive integers, what probability distributions on ${1,\ldots,m}{2}$ are equal to the distribution of $(f(X_{1},\ldots,X_{k}),\,g(Y_{1},\ldots,Y_{k}))$ for some $f,g\colon\mathbb{R}{k}\to{1,\ldots,m}$? When $X$ and $Y$ are standard Gaussians with fixed correlation $\rho\in(-1,1)$, we show that the set of probability distributions that can be noninteractively simulated from $k$ Gaussian samples is the same for any $k\geq m{2}$. Previously, it was not even known if this number of samples $m{2}$ would be finite or not, except when $m\leq 2$. Consequently, a straightforward brute-force search deciding whether or not a probability distribution on ${1,\ldots,m}{2}$ is within distance $0<\epsilon<|\rho|$ of being noninteractively simulated from $k$ correlated Gaussian samples has run time bounded by $(5/\epsilon){m(\log(\epsilon/2) / \log|\rho|){m{2}}}$, improving a bound of Ghazi, Kamath and Raghavendra. A nonlinear central limit theorem (i.e. invariance principle) of Mossel then generalizes this result to decide whether or not a probability distribution on ${1,\ldots,m}{2}$ is within distance $0<\epsilon<|\rho|$ of being noninteractively simulated from $k$ samples of a given finite discrete distribution $(X,Y)$ in run time that does not depend on $k$, with constants that again improve a bound of Ghazi, Kamath and Raghavendra.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.