Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enhanced Behavioral Cloning with Environmental Losses for Self-Driving Vehicles (2202.09271v1)

Published 4 Feb 2022 in cs.RO and cs.AI

Abstract: Learned path planners have attracted research interest due to their ability to model human driving behavior and rapid inference. Recent works on behavioral cloning show that simple imitation of expert observations is not sufficient to handle complex driving scenarios. Besides, predictions that land outside drivable areas can lead to potentially dangerous situations. This paper proposes a set of loss functions, namely Social loss and Road loss, which account for modelling risky social interactions in path planning. These losses act as a repulsive scalar field that surrounds non-drivable areas. Predictions that land near these regions incur in a higher training cost, which is minimized using backpropagation. This methodology provides additional environment feedback to the traditional supervised learning set up. We validated this approach on a large-scale urban driving dataset. The results show the agent learns to imitate human driving while exhibiting better safety metrics. Furthermore, the proposed methodology has positive effects on inference without the need to artificially generate unsafe driving examples. The explanability study suggests that the benefits obtained are associated with a higher relevance of non-drivable areas in the agent's decisions compared to classical behavioral cloning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.