Papers
Topics
Authors
Recent
2000 character limit reached

On the Implicit Bias Towards Minimal Depth of Deep Neural Networks (2202.09028v9)

Published 18 Feb 2022 in cs.LG

Abstract: Recent results in the literature suggest that the penultimate (second-to-last) layer representations of neural networks that are trained for classification exhibit a clustering property called neural collapse (NC). We study the implicit bias of stochastic gradient descent (SGD) in favor of low-depth solutions when training deep neural networks. We characterize a notion of effective depth that measures the first layer for which sample embeddings are separable using the nearest-class center classifier. Furthermore, we hypothesize and empirically show that SGD implicitly selects neural networks of small effective depths. Secondly, while neural collapse emerges even when generalization should be impossible - we argue that the \emph{degree of separability} in the intermediate layers is related to generalization. We derive a generalization bound based on comparing the effective depth of the network with the minimal depth required to fit the same dataset with partially corrupted labels. Remarkably, this bound provides non-trivial estimations of the test performance. Finally, we empirically show that the effective depth of a trained neural network monotonically increases when increasing the number of random labels in data.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com