Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Implicit Bias Towards Minimal Depth of Deep Neural Networks (2202.09028v9)

Published 18 Feb 2022 in cs.LG

Abstract: Recent results in the literature suggest that the penultimate (second-to-last) layer representations of neural networks that are trained for classification exhibit a clustering property called neural collapse (NC). We study the implicit bias of stochastic gradient descent (SGD) in favor of low-depth solutions when training deep neural networks. We characterize a notion of effective depth that measures the first layer for which sample embeddings are separable using the nearest-class center classifier. Furthermore, we hypothesize and empirically show that SGD implicitly selects neural networks of small effective depths. Secondly, while neural collapse emerges even when generalization should be impossible - we argue that the \emph{degree of separability} in the intermediate layers is related to generalization. We derive a generalization bound based on comparing the effective depth of the network with the minimal depth required to fit the same dataset with partially corrupted labels. Remarkably, this bound provides non-trivial estimations of the test performance. Finally, we empirically show that the effective depth of a trained neural network monotonically increases when increasing the number of random labels in data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tomer Galanti (31 papers)
  2. Liane Galanti (5 papers)
  3. Ido Ben-Shaul (8 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com