Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LG-LSQ: Learned Gradient Linear Symmetric Quantization (2202.09009v1)

Published 18 Feb 2022 in cs.CV

Abstract: Deep neural networks with lower precision weights and operations at inference time have advantages in terms of the cost of memory space and accelerator power. The main challenge associated with the quantization algorithm is maintaining accuracy at low bit-widths. We propose learned gradient linear symmetric quantization (LG-LSQ) as a method for quantizing weights and activation functions to low bit-widths with high accuracy in integer neural network processors. First, we introduce the scaling simulated gradient (SSG) method for determining the appropriate gradient for the scaling factor of the linear quantizer during the training process. Second, we introduce the arctangent soft round (ASR) method, which differs from the straight-through estimator (STE) method in its ability to prevent the gradient from becoming zero, thereby solving the discrete problem caused by the rounding process. Finally, to bridge the gap between full-precision and low-bit quantization networks, we propose the minimize discretization error (MDE) method to determine an accurate gradient in backpropagation. The ASR+MDE method is a simple alternative to the STE method and is practical for use in different uniform quantization methods. In our evaluation, the proposed quantizer achieved full-precision baseline accuracy in various 3-bit networks, including ResNet18, ResNet34, and ResNet50, and an accuracy drop of less than 1% in the quantization of 4-bit weights and 4-bit activations in lightweight models such as MobileNetV2 and ShuffleNetV2.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.