Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Combining Varied Learners for Binary Classification using Stacked Generalization (2202.08910v1)

Published 17 Feb 2022 in cs.LG

Abstract: The Machine Learning has various learning algorithms that are better in some or the other aspect when compared with each other but a common error that all algorithms will suffer from is training data with very high dimensional feature set. This usually ends up algorithms into generalization error that deplete the performance. This can be solved using an Ensemble Learning method known as Stacking commonly termed as Stacked Generalization. In this paper we perform binary classification using Stacked Generalization on high dimensional Polycystic Ovary Syndrome dataset and prove the point that model becomes generalized and metrics improve significantly. The various metrics are given in this paper that also point out a subtle transgression found with Receiver Operating Characteristic Curve that was proved to be incorrect.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.