Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Computing list homomorphisms in geometric intersection graphs (2202.08896v1)

Published 17 Feb 2022 in cs.DS and cs.CC

Abstract: A homomorphism from a graph $G$ to a graph $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. Let $H$ be a fixed graph with possible loops. In the list homomorphism problem, denoted by \textsc{LHom}($H$), the instance is a graph $G$, whose every vertex is equipped with a subset of $V(H)$, called list. We ask whether there exists a homomorphism from $G$ to $H$, such that every vertex from $G$ is mapped to a vertex from its list. We study the complexity of the \textsc{LHom}($H$) problem in intersection graphs of various geometric objects. In particular, we are interested in answering the question for what graphs $H$ and for what types of geometric objects, the \textsc{LHom}($H$) problem can be solved in time subexponential in the number of vertices of the instance. We fully resolve this question for string graphs, i.e., intersection graphs of continuous curves in the plane. Quite surprisingly, it turns out that the dichotomy exactly coincides with the analogous dichotomy for graphs excluding a fixed path as an induced subgraph [Okrasa, Rz\k{a}.zewski, STACS 2021]. Then we turn our attention to subclasses of string graphs, defined as intersections of fat objects. We observe that the (non)existence of subexponential-time algorithms in such classes is closely related to the size $\mathrm{mrc}(H)$ of a maximum reflexive clique in $H$, i.e., maximum number of pairwise adjacent vertices, each of which has a loop. We study the maximum value of $\mathrm{mrc}(H)$ that guarantees the existence of a subexponential-time algorithm for \textsc{LHom}($H$) in intersection graphs of (i) convex fat objects, (ii) fat similarly-sized objects, and (iii) disks. In the first two cases we obtain optimal results, by giving matching algorithms and lower bounds. Finally, we discuss possible extensions of our results to weighted generalizations of \textsc{LHom}($H$).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.